正比例就是两种相关联的量,一个量随着另一个量的增加(减少)而相应的增加(减少),商一定(不变)。
例 苹果的总金额 9 12 15 ···
苹果的总重量 3 4 5 ···
因为商是除法要用除法。 看上面的表格(我乱做的···)我们能知道表格里有苹果的总金额和苹果的总重量这两种相关联的量,是苹果的总金额随着苹果的总重量的增加而增加,也知道有这样一个公式苹果的总金额÷苹果的总重量=苹果的单价 我们可以立式 9÷3=3(一定)12÷4=3(一定) 15÷5=3(一定) 因为单价3是不会变的,是一定的就成正比例。
希望对你有帮助
小学六年级数学人教版课件
“圆的面积”是在学生掌握了面积的含义及长方形、正方形等平面图形的面积计算方法,认识了圆,会计算圆的周长的基础上进行教学的。本课时的教学设计,我特别注意遵循学生的认知规律,重视学生获取知识的思维过程,重视从学生的生活经验和已有知识出发学习数学,理解数学。本节教学主要突出了以下几点:
一、以旧引新,渗透“转化”思想
在学习新知之前,引导学生回忆以前探究长方形、平行四边形、三角形、梯形面积公式的推导方法,引导学生发现“转化”是探究新的数学知识、解决数学问题的好方法,为下面探究圆的面积计算的方法奠定基础。
二、动手剪拼,体验“化曲为直”
在凸现圆的面积的意义以后,通过对比复习的平面图形的面积推导方法,让学生大胆猜测圆的面积怎样推导。学生猜测后,再拿出准备好的两个同样大小的圆片,将其中一个平均分成若干份,然后拼成平行四边形或长方形,学生动手剪拼好后,选择其中2~3组进行观察对比,发现如果把一个圆形平均分成的份数越多,这个图形就越接近平行四边形或长方形。再对比圆形和这个拼成的图形之间的关系。通过剪、拼图形和原图形的对比,将圆与拼成图形有关的部分用彩色笔标出来,形成鲜明的对比,并为后面推导面积的计算公式作了充分的铺垫。
三、演示操作,感受知识的形成
通过观察,比较、分析,发现圆的面积、周长、半径和拼成的近似长方形面积、长、宽之间的关系,让学生推导出圆的面积计算公式。这样由扶到放,由现象到本质地引导,又使学生始终参与到如何把圆转化为长方形、平行四边形的探索活动中来,从而感受知识的形成。
四、分层练习,体验运用价值
结合课本中的例题,设计了基础练习、提高练习、综合练习三个层次,从三个不同的层面对学生的学习情况进行检测。第一,基础练习巩固计算公式的运用,强调规范的书写格式;第二,提高练习收集了身边的实际内容,让这节课所学的内容联系生活,得到灵活运用;第三,综合练习既联系了前面所学的知识(已知圆周长,先求半径,再求圆的面积),又锻炼了学生的综合运用能力。在每一道练习题的设置上,都有不同的目的性,注重每个练习的指导侧重点。
但本节课的新课时间过长,使得练习不够充分,还需要在以后的教学中加以注意。
教学目标
1.知识目标:了解圆的面积的含义,经历圆面积计算公式的推导过程,掌握圆面积计算公式。
2.能力目标:能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
3.情感目标:在估一估和探究圆面积公式的活动中,体会“化曲为直”的思想,初步感受极限思想。
重点难点
重点:能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
难点:圆的面积计算公式的推导过程
教具
多媒体课件一套
教学过程:
一、创设情境,导入课题
用一个小故事导入新课:这节课先请大家听个小故事,看看大家能不能解决故事中的问题,小白兔和小山羊在山坡上各开垦了一块地,小白兔开垦的地是圆形的,而小山羊开垦的地是正方形的。它们都以为自己很能干,都说自己开垦的土地面积大,可是又说不出什么理由来。那么,究竟哪块地的面积大呢?你怎样想?
生:只要把两块地的面积求出来不就可以把问题解决了吗?
师:可是正方形的面积我们可以计算,圆的面积大家会算吗?
生:不会。
师:那么,大家不要灰心,只要我们认真学习了这一节课,这个问题我们就会迎刃而解。今天就让我们一起来探讨《圆的面积》。
板书课题:圆的面积
二、建立概念,探讨方法
1、师:圆是我们最近学习的也是最美丽的平面图形,请大家联系我们以前学过的平面图形面积的含义想一想什么是圆的面积呢?生回答,然后课件展示:圆所占平面的大小叫做圆的面积。
2、提出问题:怎样计算圆的面积呢?教师引导(让学生回忆以前推导平行四边形、三角形、梯形面积计算公式的方法),学生讨论。
3、总结方法:割补转换的方法。
三、探索规律,总结公式
1、用课件展示4等分圆、8等分圆、16等分圆的情况。从而得出规律:分得越细越接近平行四边形或长方形。
2、提出问题:
(1)长方形的长与圆的周长有什么关系?
(2)长方形的宽与圆的半径有什么关系?
3、课件展示,学生观察讨论,得出规律:
(1)长方形的长等于圆周长的一半。
(2)长方形的宽等于圆的半径。
4、提出问题:圆的面积与长方形的面积有何关系?
圆的面积 = 长方形的面积
5、导出公式:
圆的面积 = 长方形的面积= 长 ×宽= 圆周长的一半×半径
S =πr2
四、应用公式,解决问题
1、一个圆的半径是 4 厘米。它的面积是多少平方厘米?
2、街心花园中圆形花坛的周长是18.84米。花坛的面积是多少平方米?
五、课堂总结
能正确运用圆的面积公式计算圆的面积,并能运用圆面积知识解决一些简单实际的问题。
六、板书设计
圆的面积
圆的面积 = 长方形的面积 = 长×宽
圆 的 面 积 =πr × r
S =πr2
小学六年级数学人教版课件
教学重点 : 会读写负数,比较负数的大小
教学难点 : 比较负数的大小
认识负数
教学目标 :
1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。
2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。
3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。
教学重点:初步认识正数和负数以及读法和写法。
教学难点:理解0既不是正数,也不是负数。
教学具准备:多媒体课件、温度计、练习纸、卡片等。
教学过程 :
一、游戏导入(感受生活中的相反现象)
1、游戏:我们来玩个游戏轻松一下,游戏叫做《我反 我反 我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。
①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。
2、下面我们来难度大些的,看谁反应最快。
①我在银行存入了500元(取出了500元)。②知识竞赛中,五(1)班得了20分(扣了20分)。
③10月份,学校小卖部赚了500元。(亏了500元)。④零上10摄氏度(零下10摄氏度)。
说明什么是相反意义的量(意义正好相反)
3、谈话:周老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)
二、教学例1
1、认识温度计,理解用正负数来表示零上和零下的温度。
课件出示地图:点击南京出示温度计和南京的。首先来看一下南京的气温。
这里有个温度计。我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄氏度呢?5小格呢?10小格呢?
B、现在你能看出南京是多少摄氏度吗? (是0℃。)你是怎么知道的?(那里有个0,表示0摄氏度)。
(2)上海的气温:上海的最低气温是多少摄氏度呢?(在温度计上拨一拨)拨的时候是怎样想的呢?(在零刻度线以上四格)
指出:上海的气温比0℃要高,是零上4摄氏度。(教师结合课件,突出上海的气温在零刻度线以上)。
(3)了解首都北京的最低气温:北京又是多少摄氏度呢?与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄氏度)你能在温度计上拨出来吗?
(4)比较:“4℃”和“—4℃”的意义相同吗?有什么不同?(不一样,一个在0℃以上,一个在0℃以下)。
① 上海的气温比0℃高,是零上4摄氏度,我们可以记作+4℃,读作正四摄氏度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)
负号能不能省略不写?为什么?
② 北京的气温比0℃低,是零下4摄氏度。我们可以用-4℃来表示零下4摄氏度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。
(5)小结:通过刚才对三个城市的温度的了解,我们知道记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。
2、试一试:学生看温度计,写出各地的温度,并读一读。(写在卡片上)
3、听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。
4、小结:通过刚才的学习,我们得出:以零摄氏度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。
三、学习珠峰、吐鲁番盆地的海拔表达方法(P4第2题)
1、同学们你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。老师把有关网页带来了。(课件出现网页,上面有简单的文字介绍)。谁来读一读这段介绍。
2、今天老师还带来一张珠穆朗玛峰的海拔图,请看。(课件动态地演示珠穆朗玛峰的海拔图)。从图上,你看懂了些什么?
3、我们再来看新疆的吐鲁番盆地的海拔图。(动态演示吐鲁番盆地的海拔情况)。
你又能从图上看懂些什么呢?(引导学生交流,回答珠穆朗玛峰比海平面高8844.43米;吐鲁番盆地比海平面低155米)。
4、珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔吗?
(1)交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。
吐鲁番盆地的海拔可以记作:-155米。(板书)
(2)小结:以海平面为界线,+8844.43米或8844.43米这样的数可以表示海平面以上的高度,-155米这样的数可以表示海平面以下的高度。
四、小组讨论,归纳正数和负数。
1、通过刚才的学习,我们收集到了一些数据(课件显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么你们观察一下这些数,它们一样吗?你们想帮它们分分类吗?
2、学生交流、讨论。
3、指出:因为+8844.43也可以写成8844.43米,所以有正号和没正号都可以归于一类。提出疑问:0到底归于哪一类?(引导学生争论,各自发表意见)
① 如果都同意分三类的,老师可以出难题:我觉得0可以分在4它们一类啊,你们怎么来说服我?
② 如果有学生发表分三类的,有的分两类的,可以引导他们互相争论。
4、小结:什么是正数、负数?
师:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0是正负数的分界点,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把以前学过的,象+4、16、3/8、0.5、+8844.43等这样的数叫做正数;象-4、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)这节课我们就和大家一起来认识正数和负数。(板书:认识正数和负数)
五、联系生活,巩固练习
1.练习一第2、3题
2.你知道吗:水沸腾时的温度是____。 水结冰时的温度是____。 地球表面的最低温度是 。
3.讨论生活中的正数和负数
(1)存折:这里的-800表示什么意思?(以原来的钱为标准,取出了800元记作-800;存入了1200元记作1200元,还可以记作+1200元)
(2)电梯:这里的1和-1表示什么意思?(以地平面为界线,地平面以上一层我们用1或+1来表示,-1就表示地下一层)。老师现在要到33层应该按几啊?要到地下3层呢?
六、课堂小结
这节课我们一起认识了正数和负数。在我们的生活中,零摄氏度以上和零摄氏度以下,海平面以上和海平面以下,得分与失分等都具有相反的意义,我们都可以用正数和负数来表示
本文来自作者[admin]投稿,不代表品阁号立场,如若转载,请注明出处:https://wap.nzjuw.com/pinge/646.html
评论列表(4条)
我是品阁号的签约作者“admin”!
希望本篇文章《人教版六年级数学正比例的意义课件》能对你有所帮助!
本站[品阁号]内容主要涵盖:生活百科,小常识,生活小窍门,知识分享
本文概览:正比例就是两种相关联的量,一个量随着另一个量的增加(减少)而相应的增加(减少),商一定(不变)。例 苹果的总金额 9 12 15...